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The boundary layer equations for flow of non-Newtonian Powell-Eyring fluids past a rectangular
wedge are solved exactly over a wide range of the governing parameters. The accuracy of an ap-
proximate solution of the same flow problem, based on the integral momentum theorem, is found
to be sufficient for rapid engineering calculations.

Problems of boundary layer flows of non-Newtonian fluids have been solved up to
now predominantly for the power-law model of purely viscous behaviour' 3. For
this automorphous type of viscosity function®:® it has been stated several times,
that similarity transformations can be usually found for the same flow situations
as in Newtonian fluid mechanics. In the resulting similarity equations one new para-
meter appears, namely the dimensionless flow index n of the power-law model used.

Analysis of analogous problems for other, non-automorphous non-Newtonian
fluids are very scarce. Besides the general analysis by Lee and Ames®, the paper
by Hansen and Na’ is exceptional.

These authors tried to find conditions for the existence of similarity transformations
for steady plane two-dimensional laminar boundary layer flows of such purely
viscous fluids, the relation between the shear stress and the rate of shear of which.
can be expressed by an arbitrary continuous function. They concluded that similarity
solutions are possible only if the velocity distribution of the potential flow U(x)
could be expressed as U(x) ~ x'/?, what is often interpreted® as a flow past a wedge
of 90 deg, with constant value of the shear stress at the solid wall. Hansen and
Na” extended their general analysis to the case of Powell-Eyring (PE) fluids, con-
sidering just a relatively narrow range of governing parameters; moreover the final
presentation of their results is not very illustrative.

Therefore we decided to carry out the analysis of this case over a broader interval
of parameters which occurs with real PE fluids to get better insight into the structure
of this problem involving non-power-law boundary layer flows past solid obstacles.
The results of the exact (similarity) solution are then used for checking the ac-
curacy of results obtained for the same case approximatively by the method of
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integral momentum balance. The results obtained could serve also as basis for the
extension of the pseudosimilarity concept®™!! into the field of external boundary
layer flows of non-Newtonian fluids.

THEORETICAL

Exact SOLUTION

The problem under consideration is described by the following system of equations:
continuity

du | ov

+—=0, 1
dx 0Jy o)
momentum
0 uiu+vﬂ>=a—r+gUﬂ, 2
0x dy % dx
constitutive relation
1=1,x=y%+lfsinh" 1 ou , &)
dy B Cady
with boundary conditions
y= u=v=0,
y-= oo u-Ulx)=ex!/?, (4a,b)

Introducing a characteristic velocity U, and a characteristic length L and expressing
u and v with the aid of the dimensionless velocity function G(¢) as

u = ex'® G'(¢) )
3 1/2
v = —4LM3Y X1 (—) (26 - 6'¢), Q)
Re

where Re = gUqL/p, ¢ = UoL™'/® and the primes indicate differentiation with
respect to the so-called similarity variable

_ . Re 1/2
E=yxTPL 2’3<-3—) , %)

Eqs (2) and (3) are transformed into the form of a single ordinary differential (similar-
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ity) equation

(sz —2GG" — 1) (ﬁGnZ + 1)1/2
(BG"* + 1)"* + Ey

G” =

©

with the two parameters

10U 1
Ey = 1/uBC and f=--"2 . 9)*
/ 3L Ca )
In order to get the velocity profiles (5) and (6), equation (8) must be solved with the
boundary conditions

E=0: G=G=0, (10a,b)

Esw: G =1,

as an initial value problem, e.g. by the “shooting” method: keeping Ey and f con-
stant, G"(0) must be altered so long as an asymptotic behaviour of G'(£) in the sense
of (10b) is achieved with a prescribed accuracy on a previously unknown, but finite
interval &,,. The value of G”(0) obtained in this way may be used to estimate the dimen-

sionless value T,

TW

N e By . _ir /p
TCFW‘G(O)—F:_/—ES“}I [VBG(0)], (11)

from which the shearing stress on the surface of the plate ,, can be estimated.

APPROXIMATE SOLUTION BY THE METHOD OF INTEGRAL MOMENTUM BALANCE

Integrating the equation of motion (2) along the thickness of the boundary layer
5(x), we get (details see in®) so-called integral momentum equation for two dimen-
sional plane flows of purely viscous fluids past solid obstacles

g[iﬁu(u —u)dy + ‘l—gﬁ(u — u) dy] =1 (12)

For PE fluids, a constitutive relation of type (3) must be substituted for the shear
stress at the wall .
After introducing the dimensionless coordinates X = x/L and Z = y[é, the di-

*

In paper’ « = 1/Ey.
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mensionless longitudinal velocity for flow past a wedge with 90 deg angle
u = ex'* 4(2) (13)
and the dimensionless thickness of the boundary layer

172
& = dxTiLE (?) (14)

Eq. (12) takes the form

1

J:g(l 96z, S (xe) + %L(l —9)dz -

—?@—) —]-Ey—sin -1 m
=T [é,. \/ﬂ:l. (15)

Denoting the integrals in (/5) as

J1(1 - %9)dZ = k,, .rg@ - 9)dzZ = k, (16)

0 0

and taking — according to the results of the exact solution — &, to be a constant,
we get the final form of the integral momentum balance for the case under considera-
tion
’ Ey . 4’
koly + & ky = #0) + —2_sinh~* [*J © \/ﬂ] . (17)
3 3¢, 3B &

This equation can be solved for £, after assuming a suitable relationship for %(Z),
the so-called velocity profile in the boundary layer. Then we are able to estimate —
in analogy to T, — the approximate dimensionless value T, which is a basic charac-
teristics of the case under consideration, from the relation

Tﬂ:@-l-%sinh"‘[@ \/ﬂ] (18)

The degree of accuracy of the approximate method, which is influenced mainly

by the form of the velocity profile %¥(Z) chosen, may be tested by comparing T,
and T, according to (/1) and (/8).
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NUMERICAL CALCULATIONS

Exact Solution

The equation (8) was solved numerically by the Runge-Kutta’s method on a Tesla 200
computer. The range of the main material characteristics of PE fluids, the so called
Eyring number Ey, Ey e (0;3000), was chosen according to values of individual
material constants of PE fluids, found in the literature'?+*3. The results are presented
in Fig. 1 in terms of the ratio AT, = T./T: news Where T.newy = 1:3120 (see”®).

Approximate Solution

In spite of the fact that the results of the approximate solution depend to a great
extent on the form of the velocity profile 9(Z), there exist no unambiguous recom-
mendations for a rational choice of such a relation. In solutions of similar problems
the form of the velocity profile chosen often differs from case to case.

For all our calculations the simple velocity profile
92z)=1-(1-2) (19)

has been used, mainly because of these reasons: a) Relation (19) fulfills the most impor-
tant boundary conditions of the problem, which arise from the physical substance
of the process, 9(0) = 0 and %(1) = 1, and also the condition of compatibility
at the outer edge of the boundary layer 4'(1) = 0. b) In preliminary calculations'*

.
10° s=v3p  10°

FiG. 1
Ratios of AT, (solid lines) and AT, (broken lines) in Dependence on Dimensionless Shear
Rate §

1 — By=10, 2 — Ey= 100, 3 — Ey = 1000; the asymptotes (dotted lines) for S—0
were calculated according to Eq. (24).
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a number of velocity profiles, which fulfil the conditions sub a), have been tested.
It was found, that the value of T, calculated from Eq. (18), using profile (19), is in the
best agreement with the exact solution of the referential case of a Newtonian fluid:
T, news = 13120, T, new, = 1:309 (difference 0-2% only). c¢) The simplicity of the
relation (19), which is very useful in the mathematical operations, originates from
the fact that a compatibility condition of the profile with the equation of motion
at the point y = 0 (at the wa]l) was not a priori required when choosing the alterna-
tive %(Z)-profiles. This requirement brings about complications into the form of the
profiles and doesn’t yield more accurate final results, analogically to other similar
problems'®. Common sense and exact solution indicate %'(0) > 1.

The transcendent Eq. (17) was solved numerically using Wegstein’s iteration scheme.
The results of such calculations are presented in Fig 1, again using the ratio AT, =
= ,,/TH’Ncwl (Tn‘N,w[ = 1-309) to make a comparison of the exact and the approxi-
mate solutions easier.

RESULTS AND DISCUSSION

As is evident from Fig. 1, all the dependences obtained have a similar form: the
curves are linear for small values of f, with increasing f they decrease slowly to the
common asymptote AT — 1 for f ~ oo. This shape is similar to the relation between
the effective viscosity of a PE fluid pi.¢ and the rate of shear y

Hegs = p + sinh™* (y/C)/(yB) . (20)

From this relation it follows, that for y = 0 pye — g and for y = 0 pyr = po =
— u(1 + Ey): PE fluids behave as Newtonian fluids in both limiting cases, but with
different viscosities. This is a well known fact, considered to be an advantage of the
PE model.

The shape of the curves in Fig. 1 may be easily interpreted, after a modification
of parameter f, e.g. in the form

JGB) =5= ULC/L JRe. (21)

We see, that S can be treated as a characteristic dimensionless shear rate of the analy-
sed flow situation. The curves in Fig. 1 may be then considered to be specific forms
of rheograms for classes of PE fluids, characterized by different values of Ey.
Similar “pseudoreograms” resulted in the case of rotational flows of PE fluids'S.

From the analysis given above it follows that the limits for § —» o0 and S - 0
may be considered as two asymptotic independent cases of the flow past a rectangular
wedge by two Newtonian fluids with viscosities 4 and p(1 + Ey). The correctness
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of such an interpretation can be easily demonstrated from the forms of equation (8)
for the limiting cases under consideration:

Gl = G2 — 26,6, —1 for S - o (22)
Gy = (G ~ 2GoGy — DJ(1 + Ey) for S—0. (23)

While the expression for S - oo (Eq. (22)) is equivalent with the form which can be
found for Newtonian fluids (e.g. for Ey = 0 in Eq. (8), or see®), the relation (23)
for S - 0 can be transformed into this Newtonian form after a simple modification
which follows logically from what has been said previously: in this case we have
to use uo = (1l + Ey) instead of y at the pertinent places in the derivation.

The value of the AT-asymptotes for S — 0 can then easily be determined as

lim AT = (uof1)'"* = /(1 + Ey). (24)

As is seen from Fig. 1, the values of AT, calculated by both the methods for small S,
approach very well the asymptotic values given by Eq. (24). This fact may be con-
sidered as an evidence of the inner consistency of the performed calculations, mainly
as the determination of G"(0) is concerned.

Considering the accuracy of the integral momentum balance method, it may be
seen From Fig. 1, that in all cases this approximate method provides lower values
of the shear stress at the wall when using the velocity profile (19). The difference
between the exact and the approximate solutions are the highest at intermediate
values of S, while in the limiting cases (S — 0 and S — o) the difference decreases
and AT, approaches the asymptotic values of 1 or,/(1 + Ey), as for the exact solution.
The deviation between these two solutions defined as

AL - AT g (25)
AT,

2

reaches its maximum values d; = 92, 11-6 and 13-4% for Ey = 10, 100 and 1000
respectively. From an engineering point of view such an accuracy is acceptable and
comparable to that normally obtained in Newtonian hydrodynamics, This accuracy
could probably be improved by using more complicated approximate velocity
profiles taking into consideration the fact, that the profiles depend also on Ey and S,
as it is obvious from the exact solution. Though basic recommendations for expressing
these influences are missing it is clear that the calculation would be more complicated
after such a modification. Hence the universality of the integral momentum balance
method which is of interest for an engineer, would be lost.
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