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The boundary layer equations for flow of non-Newtonian Powell-Eyring fluids past a rectangular 
wedge are solved exactly over a wide range of the governing parameters. The accuracy of an ap­
proximate solution of the same flow problem, based on the integral momentum theorem, is found 
to be sufficient for rapid engineering calculations. 

Problems of boundary layer flows of non-Newtonian fluids have been solved up to 
now predominantly for the power-law model of purely viscous behaviour l

-
3

• For 
this automorphous type of viscosity function4

•
5 it has been stated several times, 

that similarity transformations can be usually found for the same flow situations 
as in Newtonian fluid mechanics. In the resulting similarity equations one new para­
meter appears, namely the dimensionless flow index n of the power-law model used. 

Analysis of analogous problems for other, non-automorphous non-Newtonian 
fluids are very scarce. Besides the general analysis by Lee and Ames 6

, the1>aper 
by Hansen and Na 7 is exceptional. 

These authors tried to find conditions for the existence of similarity transformations 
for steady plane two-dimensional laminar boundary layer flows of such purely 
viscous fluids, the relation between the shear stress and the rate of shear of which. 
can be expressed by an arbitrary continuous function. They concluded that similarity 
solutions are possible only if the velocity distribution of the potential flow U(x) 
could be expressed as U(x) ~ X

1
/
3

, what is often interpreted 8 as a flow past a wedge 
of 90 deg, with constant value of the shear stress at the solid wall. Hansen and 
Na 7 extended their general analysis to the case of Powell-Eyring (PE) fluids, con­
sidering just a relatively narrow range of governing parameters; moreover the final 
presentation of their results is not very illustrative. 

Therefore we decided to carry out the analysis of this case over a broader interval 
of parameters which occurs with real PE fluids to get better insight into the structure 
of this problem involving non-power-Iaw boundary layer flows past solid obstacles. 
The results of the exact (similarity) solution are then used for checking the ac­
curacy of results obtained for the same case approximatively by the method of 
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integral momentum balance. The results obtained could serve also as basis for the 
extension of the pseudosimilarity concept 9 

- 11 into the field of external boundary 
layer flows of non-Newtonian fluids. 

THEORETICAL 

EXACT SOLUTION 

The problem under consideration is described by the following system of equations: 
continuity 

(1) 

momentum 

e u - + v - = - + eV - , (
au au) or dV 

ax oy oy dx 
(2) 

constitutive relation 

r = r = JJ. - + - smh - -AU 1. _ 1 (lOU) 
yx oy B Cay , 

(3) 

with boundary conditions 

y=O: u=v=O, 

y ~ 00: u ~ v(x) = ex 1
/
3 

, (4a,b) 

Introducing a characteristic velocity V 0 and a characteristic length L and expressing 
u and v with the aid of the dimensionless velocity function G( e) as 

u = ex 1
/

3 G'(e) (5) 

(6) 

where Re = eVoL!JJ., e = V OC 1
/
3 and the primes indicate differentiation with 

respect to the so-called similarity variable 

(7) 

Eqs (2) and (3) are transformed into the form of a single ordinary differential (similar-
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ity) equation 

Gill = (G,2 - 2GG" - 1) (f3GI/2 + 1)1/2 

(f3G"2 + 1)1/2 + Ey 

with the two parameters 

Ey = 1/flBC and f3 = ! QU~ _ 1_ . 
3 L C2fl 

(8) 

(9)* 

In order to get the velocity profiles (5) and (6), equation (8) must be solved with the 
boundary conditions 

~ = 0 : G = G' = 0 , (lOa,b) 

~ -+ 00: G' -+ 1 , 

as an initial value problem, e.g. by the "shooting" method: keeping Ey and f3 con­
stant, GI/(O) must be altered so long as an asymptotic behaviour of G'(e) in the sense 
of (10b) is achieved with a prescribed accuracy on a previously unknown, but finite 
interval ~ 00 . The value of G"(O) obtained in this way may be used to estimate the dimen­
sionless value To 

T= '<w =GII(O)+~sinh-l[Jf3GII(O)J (11) 
o fl(Uo/L)(Re/3)1 /2 Jf3 ' 

from which the shearing stress on the surface of the plate .w can be estimated. 

ApPROXIMATE SOLUTION BY THE METHOD OF INTEGRAL MOMENTUM BALANCE 

Integrating the equation of motion (2) along the thickness of the boundary layer 
b(x), we get (details see inS) so-called integral momentum equation for two dimen­
sional plane flows of purely viscous fluids past solid obstacles 

Q - u(u - u) dy + - (u - u) dy = '<w. 
[

d fli . dUfli ] 
dx 0 dx 0 

(12) 

For PE fluids, a constitutive relation of type (3) must be substituted for the shear 
stress at the wall '<w. 

After introducing the dimensionless coordinates X = x/L and Z = y/b, the di-

In paper7 ex == l/Ey. 
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mensionless longitudinal velocity for flow past a wedge with 90 deg angle 

u = ex l /3 <;9'(Z) (13) 

and the dimensionless thickness of the boundary layer 

(14) 

Eq. (12) takes the form 

fl<;9'(1 - <;9') dZ . .i. (Xe.) + tfl(l - <;9') dZ = 
o dX 3 0 

= <;9'1(0) + ~ sinh -1 [<;9'1(0) .j pJ . 
Ha 3.jp ea 

(15) 

Denoting the integrals in (15) as 

(16) 

and taking - according to the results of the exact solution - e. to be a constant, 
we get the final form of the integral momentum balance for the case under considera­
tion 

k l' ea k - <;9'1(0) Ey. h- 1 [<;9'1(0) IpJ 
2<'a + - 1 - - - + --sm --y. 

3 3e. 3.jp e. (17) 

This equation can be solved for e. after assuming a suitable relationship for <;9'(Z), 
the so-called velocity profile in the boundary layer. Then we are able to estimate -
in analogy to T. - the approximate dimensionless value Ta, which is a basic charac­
teristics of the case under consideration, from the relation 

(18) 

The degree of accuracy of the approximate method, which is influenced mainly 
by the form of the velocity profile <;9'(Z) chosen, may be tested by comparing T. 
and Ta according to (11) and (18). 
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NUMERICAL CALCULATIONS 

Exact Solution 

The equation (8) was solved numerically by the Runge-Kutta's method on a Tesla 200 
computer. The range of the main material characteristics of PE fluids, the so called 
Eyring number Ey, Ey E (0; 3000), was chosen according to values of individual 
material constants of PE fluids, found in the literature12 ,13. The results are presented 
in Fig. 1 in terms of the ratio LlTe = To/Te.Newt' where Te.Newt = 1·3120 (see7

•
8
). 

Approximate Solution 

In spite of the fact that the results of the approximate solution depend to a great 
extent on the form of the velocity profile -:?l(Z), there exist no unambiguous recom­
mendations for a rational choice of such a relation. In solutions of similar problems 
the form of the velocity profile chosen often differs from case to case. 

For all our calculations the simple velocity profile 

-:?l(Z) = 1 - (1 - Z)3 (19) 

has been used, mainly because of these reasons: a) Relation (19) fulfills the most impor­
tant boundary conditions of the problem, which arise from the physical substance 
of the process, -:?leO) = 0 and -:?l(1) = 1, and also the condition of compatibility 
at the outer edge of the boundary layer -:?l/(1) = O. b) In preliminary caIcuiations14 

30 

10 20 

10 

10 10' 103 5=V3(3 10' 

FIG. 1 

Ratios of ATe (solid lines) and 'ATa (broken lines) in Dependence on Dimensionless Shear 
Rate S 

1 - Ey = 10, 2 - Ey = 100, 3 - Ey = 1000; the asymptotes (dotted lines) for S----+ 0 
were calculated according to Eq. (24). 
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a number of velocity profiles, which fulfil the conditions sub a), have been tested. 
It was found , that the value of Ta calculated from Eq. (18), using profile (19), is in the 
best agreement with the exact solution of the referential case of a Newtonian fluid: 
Te,Newt = 1'3120, Ta,Newt = 1·309 (difference 0·2% only). c) The simplicity of the 
relation (19), which is very useful in the mathematical operations, originates from 
the fact that a compatibility condition of the profile with the equation of motion 
at the point y = 0 (at the wall) was not a priori required when choosing the alterna­
tive ~(Z)-profiles. This requirement brings about complications into the form of the 
profiles and doesn't yield more accurate final results, analogically to other similar 
problems15 . Common sense and exact solution indicate ~I(O) > l. 

The transcendent Eq. (17) was solved numerically using Wegstein's iteration scheme. 
The results of such calculations are presented in Fig 1, again using the ratio d Tn = 

= Ya/Ta,Newt (T.,Newt = 1'309) to make a comparison of the exact and the approxi­
mate solutions easier. 

RESULTS AND DISCUSSION 

As is evident from Fig. 1, all the dependences obtained have a similar form: the 
curves are linear for small values of p, with increasing p they decrease slowly to the 
common asymptote d T -+ 1 for p -+ CfJ . This shape is similar to the relation between 
the effective viscosity of a PE fluid /leff and the rate of shear y 

/leff = /l + sinh -1 (y/C)/(yB) . (20) 

From this relation it follows, that for y -+ CfJ /leff -+ /l and for y -+ 0 /leer == 110 -+ 

-+ /l(1 + EY): PE fluids behave as Newtonian fluids in both limiting cases, but with 
different viscosities. This is a well known fact, considered to be an advantage of the 
PE model. 

The shape of the curves in Fig. 1 may be easily interpreted, after a modification 
of parameter p, e.g. in the form 

..j(3P) == s = Uo/L ..jRe. 
C 

(21) 

We see, that S can be treated as a characteristic dimensionless shear rate of the analy­
sed flow situation. The curves in Fig. 1 may be then considered to be specific forms 
of rheograms for classes of PE fluids, characterized by different values of Ey. 
Similar "pseudoreograms" resulted in the case of rotational flows of PE fluids 16

. 

From the analysis given above it follows that the limits for S -+ CfJ and S -+ 0 
may be considered as two asymptotic independent cases of the flow past a rectangular 
wedge by two Newtonian fluids with viscosities /l and /l(1 + Ey). The correctness 
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of such an interpretation can be easily demonstrated from the forms of equation (8) 
for the limiting cases under consideration: 

for S --+ 00 

G~ = (G~2 - 2GoG~ - 1)/(1 + Ey) for S --+ o. 

(22) 

(23) 

While the expression for S --+ 00 (Eq. (22)) is equivalent with the form which can be 
found for Newtonian fluids (e .g. for Ey = 0 in Eq. (8), or seeS), the relation (23) 
for S --+ 0 can be transformed into this Newtonian form after a simple modification 
which follows logically from what has been said previously: in this case we have 
to use {to = {t(1 + Ey) instead of {t at the pertinent places in the derivation. 

The value of the ~T-asymptotes for S --+ 0 can then easily be determined as 

lim ~T = ({to/{t)1 /2 = J(l + Ey) . (24) 
s-o 

As is seen from Fig. 1, the values of ~T, calculated by both the methods for small S, 
approach very well the asymptotic values given by Eq. (24). This fact may be con­
sidered as an evidence of the inner consistency of the performed calculations, mainly 
as the determination of G"(O) is concerned. 

Considering the accuracy of the integral momentum balance method, it may be 
seen From Fig. 1, that in all cases this approximate method provides lower values 
of the shear stress at the wall when using the velocity profile (19). The difference 
between the exact and the approximate solutions are the highest at intermediate 
values of S, while in the limiting cases (S --+ 0 and S --+ (0) the difference de~reases 
and ~Ta approaches the asymptotic values of 1 or J(l + Ey), as for the exact solution. 
The deviation between these two solutions defined as 

(j = ~Te - ~Ta . 100 
T ~T. 

(25) 

reaches its maximum values bT = 9·2, 11·6 and 13'4% for Ey = 10, 100 and 1000 
respectively. From an engineering point of view such an accuracy is acceptable and 
comparable to that normally obtained in Newtonian hydrodynamics. This accuracy 
could probably be improved by using more complicated approximate velocity 
profiles taking into consideration the fact, that the profiles depend also on Ey and S, 
as it is obvious from the exact solution. Though basic recommendations for expressing 
these influences are missing it is clear that the calculation would be more complicated 
after such a modification. Hence the universality of the integral momentum balance 
method which is of interest for an engineer, would be lost. 
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